25 research outputs found

    Self-Organizing Mobility Control in Wireless Sensor and Actor Networks Based on Virtual Electrostatic Interactions

    Get PDF
    This paper introduces a new mobility control method for surveillance applications of wireless sensor and actor networks. The proposed method is based on virtual electrostatic forces which act on actors to coordinate their movements. The definition of virtual forces is inspired by Coulomb’s law from physics. Each actor calculates the virtual forces independently based on known locations of its neighbours and predetermined borders of the monitored area. The virtual forces generate movements of actors. This approach enables effective deployment of actors at the initial stage as well as adaptation of actors’ placement to variable conditions during execution of the surveillance task without the need of any central controller. Effectiveness of the introduced method was experimentally evaluated in a simulation environment. The experimental results demonstrate that the proposed method enables more effective organization of the actors’ mobility than state-of-the-art approaches

    Fully Connected Neural Networks Ensemble with Signal Strength Clustering for Indoor Localization in Wireless Sensor Networks

    Get PDF
    The paper introduces a method which improves localization accuracy of the signal strength fingerprinting approach. According to the proposed method, entire localization area is divided into regions by clustering the fingerprint database. For each region a prototype of the received signal strength is determined and a dedicated artificial neural network (ANN) is trained by using only those fingerprints that belong to this region (cluster). Final estimation of the location is obtained by fusion of the coordinates delivered by selected ANNs. Sensor nodes have to store only the signal strength prototypes and synaptic weights of the ANNs in order to estimate their locations. This approach significantly reduces the amount of memory required to store a received signal strength map. Various ANN topologies were considered in this study. Improvement of the localization accuracy as well as speed-up of learning process was achieved by employing fully connected neural networks. The proposed method was verified and compared against state-of-the-art localization approaches in realworld indoor environment by using both stationary andmobile sensor nodes

    Road Traffic Monitoring System Based on Mobile Devices and Bluetooth Low Energy Beacons

    Get PDF
    The paper proposes a method, which utilizes mobile devices (smartphones) and Bluetooth beacons, to detect passing vehicles and recognize their classes. The traffic monitoring tasks are performed by analyzing strength of radio signal received by mobile devices from beacons that are placed on opposite sides of a road. This approach is suitable for crowd sourcing applications aimed at reducing travel time, congestion, and emissions. Advantages of the introduced method were demonstrated during experimental evaluation in real-traffic conditions. Results of the experimental evaluation confirm that the proposed solution is effective in detecting three classes of vehicles (personal cars, semitrucks, and trucks). Extensive experiments were conducted to test different classification approaches and data aggregation methods. In comparison with state-of-the-art RSSI-based vehicle detection methods, higher accuracy was achieved by introducing a dedicated ensemble of random forest classifiers with majority voting

    Justified granulation aided noninvasive liver fibrosis classification system

    Get PDF
    According to the World Health Organization 130-150 million (according to WHO) of people globally are chronically infected with hepatitis C virus. The virus is responsible for chronic hepatitis that ultimately may cause liver cirrhosis and death. The disease is progressive, however antiviral treatment may slow down or stop its development. Therefore, it is important to estimate the severity of liver fibrosis for diagnostic, therapeutic and prognostic purposes. Liver biopsy provides a high accuracy diagnosis, however it is painful and invasive procedure. Recently, we witness an outburst of non-invasive tests (biological and physical ones) aiming to define severity of liver fibrosis, but commonly used FibroTest®, according to an independent research, in some cases may have accuracy lower than 50 %. In this paper a data mining and classification technique is proposed to determine the stage of liver fibrosis using easily accessible laboratory data. Methods: Research was carried out on archival records of routine laboratory blood tests (morphology, coagulation, biochemistry, protein electrophoresis) and histopathology records of liver biopsy as a reference value. As a result, the granular model was proposed, that contains a series of intervals representing influence of separate blood attributes on liver fibrosis stage. The model determines final diagnosis for a patient using aggregation method and voting procedure. The proposed solution is robust to missing or corrupted data. Results: The results were obtained on data from 290 patients with hepatitis C virus collected over 6 years. The model has been validated using training and test data. The overall accuracy of the solution is equal to 67.9 %. The intermediate liver fibrosis stages are hard to distinguish, due to effectiveness of biopsy itself. Additionally, the method was verified against dataset obtained from 365 patients with liver disease of various etiologies. The model proved to be robust to new data. What is worth mentioning, the error rate in misclassification of the first stage and the last stage is below 6.5 % for all analyzed datasets. Conclusions: The proposed system supports the physician and defines the stage of liver fibrosis in chronic hepatitis C. The biggest advantage of the solution is a human-centric approach using intervals, which can be verified by a specialist, before giving the final decision. Moreover, it is robust to missing data. The system can be used as a powerful support tool for diagnosis in real treatmen

    A Survey and Comparison of Low-Cost Sensing Technologies for Road Traffic Monitoring

    Get PDF
    Abstract This paper reviews low-cost vehicle and pedestrian detection methods and compares their accuracy. The main goal of this survey is to summarize the progress achieved to date and to help identify the sensing technologies that provide high detection accuracy and meet requirements related to cost and ease of installation. Special attention is paid to wireless battery-powered detectors of small dimensions that can be quickly and effortlessly installed alongside traffic lanes (on the side of a road or on a curb) without any additional supporting structures. The comparison of detection methods presented in this paper is based on results of experiments that were conducted with a variety of sensors in a wide range of configurations. During experiments various sensor sets were analyzed. It was shown that the detection accuracy can be significantly improved by fusing data from appropriately selected set of sensors. The experimental results reveal that accurate vehicle detection can be achieved by using sets of passive sensors. Application of active sensors was necessary to obtain satisfactory results in case of pedestrian detection

    SEM-EDS and X-ray micro Computed Tomography studies of skeletal surface pattern and body structure in the freshwater sponge Spongilla lacustris collected from Goczalkowice reservoir habit (Southern Poland)

    Get PDF
    Introduction. Freshwater sponges are common animals of most aquatic ecosystems. They feed by filtering small particles from the water, and so are thought to be sensitive indicators of pollution. Sponges are strongly associated with the abiotic environment and are therefore used as bioindicators for monitoring of water quality in water habitats. Among the freshwater sponges, Spongilla lacustris is one of the classic models used to study evolution, gene regulation, development, physiology and structural biology in animal water systems. It is also important in diagnostic of aquatic environments. The aim of this study was to characterize and visualize three-dimensional architecture of sponge body and measure skeleton elements of S. lacustris from Goczalkowice reservoir for identification purposes. Material and methods. The scanning electron microscopy with an energy dispersive X-ray microanalysis (SEM- -EDS) and X-ray micro computed tomography (micro-CT) were used to provide non-invasive visualization of the three-dimensional architecture of Spongilla lacustris body. Results. We showed that sponge skeleton was not homogeneous in composition and comprised several forms of skeleton organization. Ectosomal skeleton occurred as spicular brushes at apices of primary fibres with cementing spongin material. Choanosomal skeletal architecture was alveolate with pauci- to multispicular primary fibres connected by paucispicular transverse fibres, made by megascleres embedded in a scanty spongin matrix both in the choanosome and at the sponge surface. In contrast, microscleres were irregularly scattered in choanosome and skeletal surface. Furthermore, SEM-EDS studies showed that the distribution of silica in megascleres and microscleres was observed along the spicules and sponge surface areas. Conclusions. In conclusion, we showed that the combination of SEM-EDS and micro-CT microscopy techniques allowed obtaining a complete picture of the sponge spatial architecture

    Towards an event annotated corpus of Polish

    Get PDF
    Towards an event annotated corpus of PolishThe paper presents a typology of events built on the basis of TimeML specification adapted to Polish language. Some changes were introduced to the definition of the event categories and a motivation for event categorization was formulated. The event annotation task is presented on two levels – ontology level (language independent) and text mentions (language dependant). The various types of event mentions in Polish text are discussed. A procedure for annotation of event mentions in Polish texts is presented and evaluated. In the evaluation a randomly selected set of documents from the Corpus of Wrocław University of Technology (called KPWr) was annotated by two linguists and the annotator agreement was calculated. The evaluation was done in two iterations. After the first evaluation we revised and improved the annotation procedure. The second evaluation showed a significant improvement of the agreement between annotators. The current work was focused on annotation and categorisation of event mentions in text. The future work will be focused on description of event with a set of attributes, arguments and relations

    Temporal Expressions in Polish Corpus KPWr

    Get PDF
    Temporal Expressions in Polish Corpus KPWrThis article presents the result of the recent research in the interpretation of Polish expressions that refer to time. These expressions are the source of information when something happens, how often something occurs or how long something lasts. Temporal information, which can be extracted from text automatically, plays significant role in many information extraction systems, such as question answering, discourse analysis, event recognition and many more. We prepared PLIMEX — a broad description of Polish temporal expressions with annotation guidelines, based on the state-of-the-art solutions for English, mainly TimeML specification. We also adapted the solution to capture the local semantics of temporal expressions, called LTIMEX. Temporal description also supports further event identification and extends event description model, focusing at anchoring events in time, ordering events and reasoning about the persistence of events. We prepared the specification, which is designed to address these issues and we annotated all documents in Polish Corpus of Wroclaw University of Technology (KPWr) using our annotation guidelines

    Ensemble of RNN Classifiers for Activity Detection Using a Smartphone and Supporting Nodes

    No full text
    Nowadays, sensor-equipped mobile devices allow us to detect basic daily activities accurately. However, the accuracy of the existing activity recognition methods decreases rapidly if the set of activities is extended and includes training routines, such as squats, jumps, or arm swings. Thus, this paper proposes a model of a personal area network with a smartphone (as a main node) and supporting sensor nodes that deliver additional data to increase activity-recognition accuracy. The introduced personal area sensor network takes advantage of the information from multiple sensor nodes attached to different parts of the human body. In this scheme, nodes process their sensor readings locally with the use of recurrent neural networks (RNNs) to categorize the activities. Then, the main node collects results from supporting sensor nodes and performs a final activity recognition run based on a weighted voting procedure. In order to save energy and extend the network’s lifetime, sensor nodes report their local results only for specific types of recognized activity. The presented method was evaluated during experiments with sensor nodes attached to the waist, chest, leg, and arm. The results obtained for a set of eight activities show that the proposed approach achieves higher recognition accuracy when compared with the existing methods. Based on the experimental results, the optimal configuration of the sensor nodes was determined to maximize the activity-recognition accuracy and reduce the number of transmissions from supporting sensor nodes
    corecore